Headlines News :

Το νέο σήμα της Google!

Δημοσίευση από Art and City | Δευτέρα 15 Απριλίου 2013 11:00 π.μ.

Κόσμος. 

Ο Λέοναρντ Όιλερ Leonard Euler ήταν Ελβετός μαθηματικός. Σε αυτόν οφείλεται, ανάμεσα σε άλλα, και η καθιέρωση του συμβόλου f(x) για τις συναρτήσεις. Σήμερα Δευτέρα 15 Απριλίου 2013 η Google γιορτάζει τα 360 χρόνια από τη γέννηση του Ελβετού μαθηματικού, που έπαιξε καθοριστικό ρόλο στην εξέλιξη της επιστήμης.

Βιογραφία
Γεννήθηκε στη Βασιλεία της Ελβετίας στις 15 Απριλίου 1707 και ήταν γιος ιερέα. Σπούδασε γεωμετρία στο πανεπιστήμιο της Βασιλείας. Σε ηλικία 20 ετών πήγε στην Αγία Πετρούπολη της Ρωσίας, όπου εργάστηκε για την οργάνωση της Ακαδημίας Επιστημών, έπειτα από πρόσκληση της αυτοκράτειρας Αικατερίνης Α΄. Διορίστηκε καθηγητής της Φυσικής Φιλοσοφίας στο πανεπιστήμιο της Αγίας Πετρούπολης.

Το 1744 τον προσκάλεσε ο Φρειδερίκος Β΄ της Πρωσίας στο Βερολίνο, για να αναλάβει διευθυντής του τμήματος των μαθηματικών της εκεί Ακαδημίας. Είναι χαρακτηριστικός ο λόγος που είπε στο Γάλλο άθεο φιλόσοφο Ντενί Ντιντερό, όταν η Τσαρίνα της Ρωσίας Μεγάλη Αικατερίνη είχε καλέσει τον Όιλερ στην Αυλή της, σε μία προσπάθεια να σταματήσει την αθυροστομία του Ντιντερό. Ο Ελβετός είπε στο Γάλλο: «Κύριε, ( α + β ) / ν = χ, άρα ο Θεός υπάρχει. Απαντήστε!». Έτσι, ο Ντιντερό αποχώρησε ηττημένος.

Τα τελευταία 17 χρόνια της ζωής του ο διάσημος μαθηματικός ήταν σχεδόν τυφλός. Αυτό, όμως, δεν τον εμπόδισε να εργάζεται. Η εκπληκτική μνήμη του σε συνδυασμό με τη διανοητική του διαύγεια, τού ήταν αρκετές για να πραγματοποιεί προφορικά τους υπολογισμούς του, τους οποίους υπαγόρευε στη γραμματέα του. Μάλιστα, την περίοδο της τύφλωσής του παρήγαγε το μισό από το συνολικό του έργο.

Πέθανε στις 18 Σεπτεμβρίου 1783. Ο μαθηματικός και φιλόσοφος Ζαν ντε Κοντορσέ είπε στον επικήδειο: «Ο Όιλερ σταμάτησε να ζει και να υπολογίζει».

Έργο.
Διακρίθηκε στα ανώτερα μαθηματικά και κυρίως στο διαφορικό και ολοκληρωτικό λογισμό. Οι σπουδαιότερες εργασίες του αναφέρονται στην ανάλυση των ισοπεριμέτρων, στη συσχέτιση των κυκλικών και των εκθετικών συναρτήσεων, στη θεωρία της περιστροφής σώματος γύρω από σταθερό σημείο, στην αναλυτική γεωμετρία (την οποία συμπλήρωσε και τελειοποίησε), στη θεωρία των αριθμών κ.τ.λ. Ακόμη υπήρξε ο εισηγητής της συντομογραφίας και του συμβολισμού (τριγωνομετρία), κάνοντας πρώτος τη χρήση του συμβόλου e για τον προσδιορισμό της βάσης των φυσικών λογαρίθμων.

Πολλοί μαθηματικοί όροι φέρουν το όνομά του, όπως η σταθερά του Όιλερ, ο αριθμός του Όιλερ (το γνωστό e), οι μεταβλητές, η γραμμή και η εξίσωση του Όιλερ κ.ά. Από τα έργα του σπουδαιότερα είναι: Η μηχανή ή η επιστήμη της κίνησης (1736), Θεωρία των κινήσεων πλανητών και κομητών (1744), Εισαγωγή στην ανάλυση των απείρως μικρών (1748, 2 τόμοι), Γενικές αρχές του διαφορικού λογισμού (1755), Γενικές αρχές του ολοκληρωτικού λογισμού (1768 – 1774), Εγχειρίδιο άλγεβρας (1770),Θεωρία των κινήσεων της Σελήνης (1772). Τα έργα του σήμερα ξεπερνούν τους 75 τόμους συνολικά.

Θεωρείται μάλιστα ο “πατέρας” του γνωστού παιχνιδιού σουντόκου, αφού ο ίδιος διατύπωσε πρώτος τους κανόνες του.

Το πρόβλημα των γεφυρών του Κένιγκσμπεργκ.
Μια από τις γνωστότερες επιτυχίες του Όιλερ ήταν η επίλυση του προβλήματος με τις γέφυρες του Κένιγκσμπεργκ.

Πρόκειται για τον ποταμό Πρέγκελ, ο οποίος, διασχίζει το Κένιγκσμπεργκ, πρωσσικό έδαφος την εποχή που ζούσε ο Όιλερ (σήμερα ανήκει στη Ρωσία και ονομάζεται Καλίνινγκραντ). Ο εν λόγω ποταμός χωρίζεται και δημιουργεί δύο νησίδες στο κέντρο της πόλης. Οι κάτοικοι του Κένινγκσμπεργκ είχαν κατασκευάσει επτά γέφυρες για να υπάρχει συγκοινωνία με τα διάφορα μέρη της πόλης. Το πρόβλημα αν μπορούσε κάποιος να περιηγηθεί την πόλη, περνώντας από κάθε γέφυρα μία μόνο φορά και να επιστρέψει στο ίδιο σημείο από όπου είχε ξεκινήσει, ήταν ένας γρίφος που ταλάνιζε για πολλά χρόνια τους κατοίκους.

Τελικά, το 1735, ο Όιλερ απέδειξε ότι κάτι τέτοιο ήταν αδύνατο. Η απόδειξη του Ελβετού αναφέρεται συχνά και ως η απαρχή της τοπολογίας, ενός κλάδου των Μαθηματικών για τον οποίο οι φυσικές λεπτομέρειες του προβλήματος δε διαδραματίζουν κανένα ρόλο. Στην απόδειξη του Όιλερ, σημασία έχει το δίκτυο των συνδέσεων μεταξύ των διαφόρων τμημάτων της πόλης και όχι η συγκεκριμένη θέση τους ή οι αποστάσεις μεταξύ τους. Ο χάρτης του Μετρό του Λονδίνου είναι ένα αντίστοιχο παράδειγμα.



Μοιραστείτε το :

0 σχόλια:

Αφήστε το σχόλιό σας εδώ...

 

Υποστήριξη : About us | Επικοινωνία | Διαφήμιση
Copyright © 2013. ArtandCity.gr - Με επιφύλαξη κάθε νόμιμου δικαιώματος.